تعمیم خواصی از جبرهای lmc به جبرهای موضعا محدب

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه
  • نویسنده علی ظهری
  • استاد راهنما اسماعیل انصاری پیری
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1388
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعمیم خواصی از جبرهای باناخ به جبر های بنیادی

‎‎یکی از مسائل مهم در ریاضیات بحث مربوط به تجزیه چند جمله ای ها می باشد. خانواده چندجمله ای ها تشکیل یک جبر می دهند بنابراین ریاضی دانان پا را فراتر قرار داده و ‎تجزیه‎‎‎‎ را به جبرها توسیع دادند. برای اولین بار کهن در سال ???? نشان داد اعضای جبرهای توپولوژیکی که نرمدار و کامل هستند تحت شرایطی تجزیه می شوند‏، که به قضیه تجزیه کهن معروف شد. سپس سایر ریاضی دانان با الهام گرفتن از کار کهن قضیه تجز...

15 صفحه اول

جبرهای فیستر با برگردان

در این مقاله به مرور فرم‌های دوخطی فیستر روی میدان‌ها و برگردان‌های فیستر روی جبرهای ساده‌ٔ مرکزی می‌پردازیم. همچنین به بیان حدس‌های مهم در این راستا، تلاش‌های انجام شده برای اثبات آن‌ها و نیز مسائل باز باقیمانده در مشخصه‌ٔ مخالف دو خواهیم پرداخت. درنهایت، تلاش‌های انجام شده برای تعمیم این حدس‌ها به مشخصه‌ٔ دو و تفاوت‌های نتایج به دست آمده در این مشخصه با سایر مشخصه‌ها نیز مرور می‌شوند.

متن کامل

کرانداری همانی های تقریبی در جبرهای موضعاً محدب ضربی

برای اثـبات قضیه معـروف تجزیه کهـن، حتی در جــبرهای باناخ، داشتـــــن همانی تـقـــریبی کراندار ازاهمیت ویژه ای برخوردار است. درتعمیم قضیه کهن به جبرهای توپولوژیکی، نه تنها وجود یک همانی تقریبی کراندار کماکـــان مورد نیاز است. بلکه برای اثـــــــبات قضیه، کرانداری قویــتری نیز اعمال شده است . دراین مقالـــه ضمن مطالعه یک مسئله باز معروف نسبتا قدیمی، در مورد همانی های تقریبی کرانداری یکنواخت، در ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023